
Qtractor - An Audio/MIDI multi-track sequencer

Rui Nuno Capela
rncbc.org

CNSL07@aLANtejo.uevora.pt

October 2007

Introduction
Qtractor is an Audio/ MIDI multi-track sequencer application written in C++ around the Qt4
toolkit using Qt Designer. The initial target platform will be Linux, where the Jack Audio
Connection Kit (JACK) for audio, and the Advanced Linux Sound Architecture (ALSA) for MIDI,
are the main infrastructures to evolve as a fairly-featured Desktop Audio/MIDI Workstation GUI,
specially dedicated to the personal home-studio.

Qtractor - CNSL07@aLANtejo.uevora.pt - Oct 2007 Rui Nuno Capela - rncbc.org 1 of 9

Figure 1: Main GUI aspect: Tracks, Mixer and Connections

mailto:cnsl@alantejo.uevora.pt

Requirements

The software requirements for build and run-time are listed as follows:

Mandatory:

● Qt 4 (core, gui, xml) - C++ class library and tools for cross-platform development and
internationalization.
http://www.trolltech.org/products/qt/

● JACK Audio Connection Kit,
http://jackaudio.org/

● ALSA - Advanced Linux Sound Architecture,
http://www.alsa-project.org/

● libsndfile - C library for reading and writing files containing sampled sound,
http://www.mega-nerd.com/libsndfile/

● LADSPA- Linux Audio Developer's Simple Plugin API,
http://www.ladspa.org/

Optional (opted-in at build time):

● libvorbis (enc, file) - Ogg Vorbis audio compression,
http://xiph.org/vorbis/

● libmad - High-quality MPEG audio decoder,
http://www.underbit.com/products/mad/

● libsamplerate – The secret rabbit code, C library for audio sample rate conversion,
http://www.mega-nerd.com/SRC/

Although most of these requirements were originally developed as native audio/MIDI
infrastructures for GNU/Linux, they have been reportedly available on Apple Mac OS X and
Microsoft Windows, thus making Qtractor potentially portable across all main Qt desktop
operating system platforms.

Download
Qtractor is still in some alpha stage of development, but already fully functional. The source
code is publicly available from the sourceforge.net project CVS repository, through anonymous
(pserver) access with the following instructions:

Login to the CVS repository:

cvs ­d:pserver:anonymous@qtractor.cvs.sourceforge.net:/cvsroot/qtractor login

When prompted for a password, hit enter and proceed for check-out:

cvs ­z3 ­d:pserver:anonymous@qtractor.cvs.sourceforge.net:/cvsroot/qtractor co qtractor

Prepare the configure script on the just created qtractor source tree directory:

cd qtractor
make ­f Makefile.cvs

Hopefully, the source tree is now ready for build and installation.

Qtractor - CNSL07@aLANtejo.uevora.pt - Oct 2007 Rui Nuno Capela - rncbc.org 2 of 9

http://www.trolltech.org/products/qt/
http://www.mega-nerd.com/SRC/
http://www.underbit.com/products/mad/
http://xiph.org/vorbis/
http://www.ladspa.org/
http://www.mega-nerd.com/libsndfile/
http://www.alsa-project.org/
http://jackaudio.org/

Installation
The standard procedure for source distributions based on autoconf follows, through the now
quite usual build command sequence:

./configure && make

and complete installation by having the appropriate (root) authority:

make install

which will end installing by copying the qtractor binary executable and desktop and icon files
to common standard base system locations.

Configuration
Qtractor holds its run-time settings and configuration state per user, in a file located as
$HOME/.config/rncbc.org/Qtractor.conf . Normally, there is no need to edit this file, as it is
recreated and rewritten every time qtractor is run.

GUI
Qtractor user interface design is thought as mainstream and standard as it could be on modern
computer desktop environments. The presentation layer is supposed to be easy for the average
user to interact and to discover the full potential and functionality of the inner core application
layer (i.e. Audio and MIDI engines, in a nutshell). Figure 1 shows an overall aspect of the GUI,
with example session loaded into the workspace.

The main presentation window includes the usual menu, toolbars with common action icon-
buttons, and the main application workspace where one finds the track list on the left and the
track time scale ruler at the top of the main arranger track view, which is where main action
takes place and tracks and clips are graphically displayed.

Core application functionality is complemented with a couple of top-level floating windows: the
mixer window, resembling a conventional mixing console assisting in the control and monitoring
operations, and the connections window, featuring integrated inter-application device
connectivity and routing (patchbay).

Two utility windows are additionally featured: the messages window, specially suited for
debugging, and the files window where audio and MIDI files are organized and selected on
demand.

Dialog windows for editing session, track and clip properties are also accessible in their proper
context. Finally, session and application configuration options are assisted through respective
customizing dialogs: buses, instruments and options.

Sessions
Qtractor sessions are defined as the complete and internally descriptive state of an arrangement
made with the software. This state description is materialized in document form, as a XML
encoded file. A session is therefore the computational description of all properties, variables,
references and parameters of all audio and MIDI files and plug-ins that composes the working
musical arrangement, put together while working with the software.

Effectively, sessions are formed by one or more tracks, which in turn includes their respective
and fundamental elements, the clips. All possible and relevant information is stored in the

Qtractor - CNSL07@aLANtejo.uevora.pt - Oct 2007 Rui Nuno Capela - rncbc.org 3 of 9

session file, making it perfectly possible to restore the current working session at a later time.
Sessions can thus be created as new, saved and loaded on demand, as found usual on
document based GUI applications. Qtractor is a SDI application, only one session can be loaded
for work at anyone time.

It is important to note that Qtractor sessions are locked hard to one, and only one, fixed audio
signal sample-rate, exactly the one the JACK server is running at the time the session is started.
Any attempt to convert disparate sample-rate sessions is subject to a recommendation warning
message. However, individual audio clip files are automatically converted on playback in real-
time to the host sample-rate (via libsamplerate).

Another restriction worth mentioning is that sessions have constant tempo (BPM) by current
design decision, but can be otherwise changed at any time. However, it must be still regarded
as a global property of the whole musical arrangement, that meaning there is no support for a
multi-tempo and time signature map, yet.

Files
Sound file selection is made available through a tabbed mini-organizer and convenient widget.
Audio and MIDI file lists are kept separated on their respective tabs. Files can be explicitly
added and grouped into a hierarchical tree list. Individual files can be explicitly drag-and-
dropped from the desktop environment and within the provided tree list. This lists all the files
which are referred in the working arrangement session. File items can be drag-and-dropped
directly into the track window, thus creating new clips in the working arrangement

Audio file format support is the same as the one provided by libsndfile (wav, aiff, flac, au, etc.)
and, optionally libvorbisfile (ogg) and libmad (mp3). MIDI file support covers the usual SMF
formats 0 and 1, through native, home-brew implementation.

Tracks and Clips
Clips are fully described as the elemental items of a session arrangement, being either integral
or partial parts of existing audio and MIDI material, stored on external formated files.

As is, Qtractor is technically described as a non-destructive sequencer and arranger. It does not
affect, alter or modify in any way, none of the audio or MIDI files that are loaded and
represented as clips. Files resulting from capture and recording operations are the notable
exceptions as is the explicit changes made through specialized clip editing (e.g., MIDI Editor).

Once created, all recorded files are thereafter loaded as usual. All editing operations are
accomplished in exclusive parametric form, having no resemblance whatsoever on the file
system.

Audio clips are representations of the whole or part of a single audio file. MIDI clips are
representations of a sequence of events of one single MIDI channel, as extracted from a SMF
format 0 file or of one single track, as from a SMF format 1 one, either in whole or in part.

Clip properties may include its label (name), start time (location), offset and length (in frames),
fade-in and fade-out length (in frames), respectively from the start and end of the clip. Although
fade-in and fade-outs are always displayed as straight lines, the actual audio volume (gain) and
MIDI velocity effect can be opted to be of either linear, square or cubic characteristic, in as for
an approximation to the logarithmic model of human ear perception.

Clips are placed on tracks, either by importing integral audio and MIDI files as new tracks or by
drag-and-dropping files into the track-view arranger window. After being initially placed on their
respective tracks, clips are subject targets to featured clip-region operations: drag-move, copy,
cut, paste, delete, etc. Altering clip fade-in and fade-out is also carried out by dragging

Qtractor - CNSL07@aLANtejo.uevora.pt - Oct 2007 Rui Nuno Capela - rncbc.org 4 of 9

corresponding visual handles.

Most clip editing operations are accomplished through usual GUI interaction, by first selecting
one or multiple clips and/or regions and applying the edit action upon the resulting selection.
There are three selection modes available: clip, range and rectangular modalities. In clip-mode,
clips are selected as a whole with no sub-clip regions possible. In range-mode, clip regions are
selected on all tracks between a given time interval or range. In rectangular-mode, only the
regions that fall under a rectangular area are selected, that meaning for adjacent tracks and
clips only.

Tracks may be armed for recording, making way for creating new audio and MIDI clip files with
captured material. Tracks can also be muted and soloed on mix-down, which also applies when
exporting. Most editing operations should be possible while playback is rolling (but not
completely safe though; there are many procedural helpers, but not completely assisted with
lock-free primitives, yet).

Engines and Buses
Qtractor is a fairly massive multi-threaded application. For instance, each audio clip has a
dedicated disk I/O executive thread, which synchronizes with the master engine and, for all
purposes, to central JACK real-time audio processing cycle, through a lock-free ring-buffer.
These audio file ring-buffers are recycled (filled/emptied) at one second threshold, and has a
maximum streaming capacity of 4-5 seconds of audio sample data. Smaller clips are
permanently cached in buffer (resident in RAM).

Audio thread scheduling is mastered and mandated through the JACK callback API model. MIDI
clip events are queued in anticipation through one MIDI output thread, which feeds a ALSA
sequencer queue, synchronized on 1-second periods to the JACK process cycle. A single
thread is responsible to listening (polling) on MIDI input and multiplexes all incoming events
through record-armed MIDI tracks. Timestamping is done through ALSA sequencer facility.

Looping is assisted through the audio file buffering layer, right at the disk I/O thread context. The
same consideration is adopted for MIDI output queuing. JACK transport support is not an option,
as playback positioning is constantly kept in soft-chase fashion. Audio frame relocation is
accounted from successive JACK client process cycles (i.e. buffer-period resolution).

On this particular design, JACK and ALSA sequencer ports are logically aggregated as buses
with respect to the audio and MIDI signal routing paths, functioning as fundamental device
interfaces. Input buses, through exposing their respective input ports, are responsible inlets on
capture and recording. Output buses are the main signal outlets and are responsible as
playback and, most importantly, as mix-down devices.

Buses are independently assigned to tracks. Each track is assigned to one input bus for
recording, and to one output bus for playback and mix-down. The assigned output bus
determines the number of channels the track supports. Clips bounded to disparate multichannel
audio files, for which their number of channels do not match with proper bus/track's one, are
automatically resolved on mix-down.

By default, “Master” buses are automatically created at session startup, being stereo for audio (2
channels ports, auto-connected) and single port for MIDI (16 logically addressable channels).
Bus ports are accessible for arbitrary connection to and from external client applications or
devices, through the connections window interface.

Track View
Tracks are arranged as a sequence of one or more overlapping clips of the same file type, either
audio or MIDI. The tracks window is the main application workspace, serving as a virtual canvas

Qtractor - CNSL07@aLANtejo.uevora.pt - Oct 2007 Rui Nuno Capela - rncbc.org 5 of 9

of a multi-track composition arranger. Most of the editing operations are made on this track list-
view window.

The track list-view window has two panes, the left one displays the list of tracks with their
respective properties and the center-right pane is the proper track-view canvas window where
main multi-track composition and arranging activity is pictured and performed. As usual, tracks
are stacked on horizontal strips and clips are layered on a bi-dimensional grid, in time sequence
for each track strip. Time is modeled on the horizontal axis and pictured by a bar-beat scale
ruler at the top of the track-view.

Clips may be conveniently aligned to discrete time positions, depending on the current snap
mode setting. When not set to “None”, the snapping is always carried out to MIDI resolution,
quantized to ticks per quarter note granularity.

Each track has its own user assignable colors for better visual identification. Audio clips are
displayed with approximate waveform graphic, with peak and RMS signal envelopes as read
from the respective audio file segment. MIDI clips are shown as a piano-roll like graphic, with
note events shown as small rectangles, depicting pitch, time and duration.

All session, track and clip editing operations are undo/redo-able. Discrete view zooming and
track vertical resizing operations are also available.

Mixer
The mixer window serves for session control, monitoring, recording and assistance in mixdown
operations. The mixer is divided in three panes: the left accomodates all input buses, the
center with individual track strips and the right for the output buses. Each mixer strip offers a
volume and pan control and monitors each one of the respective buses and tracks. Audio strips
also offers the possibility to chain plug-in effects (LADSPA).

Monitoring is presented in the form of peak level meters for audio and note event velocity for
MIDI, both with fall-off “eye-candy”. MIDI mixer strips also feature an output event activity LED.

Audio volume is presented on a dBfs scale (IEC 268-10) and pan is applied in approximated
equal-power effect (trigonometric weighting). For MIDI tracks, volume control is implemented
through respective channel controller-7 and system-exclusive master volume for output buses.
MIDI pan control is only available for track strips and is implemented through channel
controller-10. MIDI input buses have volume and pan controls disabled.

Connections Patchbay
The connections window serves the establishing of audio and MIDI port connections between
the internal core layer input and output buses (ports) and the external devices or client
applications. Incidentally the connections window can also be used to make connections
between external client application ports, either JACK clients for audio or ALSA sequencer
clients for MIDI. In fact, it almost completely replicates the very same functionality of QjackCtl
[1]. All connections on the existing input and output buses are properly saved and restored upon
session recall.

Audio Effects Plug-ins
LADSPA plug-in support is available for all audio input and output buses and for all audio tracks.
Plug-ins are aggregated seamlessly as one single instance on a multi-channel context and can
be individually selected, activated and moved within the plug-in chain order. Individual plug-in
control parameters can be modified in real-time through provided dialog windows and
maintained as named presets for re-usability.

Qtractor - CNSL07@aLANtejo.uevora.pt - Oct 2007 Rui Nuno Capela - rncbc.org 6 of 9

MIDI Instruments
As a special feature, Cakewalk instrument definition files (.ins) are natively supported, thus
offering a convenient MIDI bank-select/program-change mapping for existing MIDI instrument
patch names, and easier, intelligible selection of MIDI track channels.

MIDI Editor
Each MIDI clip content may be readily edited under a dedicated and fairly complete piano roll
MIDI Editor widget, with individual pitch, velocity and controller editable trough the usual GUI
operations. Multi-extended selection, drag-and-drop, move, cut, copy, paste, deletion of every
event in the MIDI sequence is rightly accessible on the fly.

Special home-brew tools for batch processing are also implemented and applicable to the any
event selection: quantize, transpose, normalize, randomize and resize. All MIDI editing
operations are available and processed in real-time, effective while playback. Several MIDI
Editor instances may be active and open in any time, provided each one refers to its own clip.

All changed MIDI content is subject for being saved to regular standard MIDI files (SMF Format
0 or 1).

Audio / MIDI Export
All or part of the session may be exported to one audio or MIDI file. Audio export is implemented
through the special JACK freewheel mode, thus faster than real-time, resulting in the complete
and exact mix-down of selected audio material into a designated audio file of the opted format
(wav, flac, au, aiff or ogg). MIDI export is just the same but for MIDI material only, resulting in
the merging and concatenation of selected MIDI tracks and clips into a single MIDI file (SMF
Format 0 or 1).

Qtractor - CNSL07@aLANtejo.uevora.pt - Oct 2007 Rui Nuno Capela - rncbc.org 7 of 9

Figure 2: The MIDI Editor GUI aspect

Future Thoughts
As of its current status, there are many and rather fundamental functionality still misssing that
tear Qtractor apart from a finished product, let alone for the quest of its own goals. It's still a
work in progress. In my own personal agenda priority, the following are the ones for taking care
in times to come:

● Metronome clicks
● Punch-in/out and looped recording (adding takes)
● Time-stretching and pitch-shifting of individual audio clips
● Auto-crossfading of overlapped clips
● Automation and dynamic curves (volume, pan, plug-in parameters. controllers)
● DSSI support (including VSTi support through DSSI-VST)
● Next generation LV2 plug-ins
● JACK-MIDI support
● Markers and named regions
● MIDI Time Code
● MIDI Clock sync
● OSC interface
● Integrated scripting (angelscript?)
● Tempo and time signature map

Conclusion
As fundamental as is, Qtractor might be just some clone of earlier and existing software, being
blatantly one of the Cakewalk's Pro Audio series. It is however more than that, when regarded
from the free open-source software development point of view, much like some cauldron
framework, user-oriented, programmable, pattern sequencer, eventually targeted as a potential
toolbox and workbench for easy, direct, live music-making and experimentalism

Acknowledgements
I am grateful to the free software open-source community in general and to the Linux Audio
developers and users in particular, who dedicated their valuable time to the development and
support of free audio and MIDI software, being Qtractor just one humble manifestation of such
class of human endeavor.

Qtractor is free / open-source software; you can redistribute it and/or modify it under the terms of
the GNU General Public License version 2 or later.

Qtractor logo/icon is an original work of Andy Fitzsimon, borrowed from the public domain
openclipart.org gallery.

All or some product names mentioned in this document may be trademarks of their respective
holders.

Qtractor - CNSL07@aLANtejo.uevora.pt - Oct 2007 Rui Nuno Capela - rncbc.org 8 of 9

About the Author

Name: Rui Nuno Capela

E-mail: rncbc@rncbc.org

Homepage: http://www.rncbc.org/

Resume

In 1986 got a B.Sc. in Electronic and Telecommunications Engineering, from Instituto Militar dos
Pupilos do Exército (IMPE), Lisbon, Portugal. In 1990 got a M.Sc. in Electrical and Computer
Engineering, from Instituto Superior Técnico (IST), Technical University of Lisbon, Portugal, with
specialization in Systems and Computers. Consultant and a professional programmer since
1986. Certified DBA on DB2 OS/390 (z/OS) and DB2 UDB Linux, Unix and Windows, currently
the main professional activity, since 1995. Active open-source player, with personal interests in
the Linux Audio/MIDI development, having QjackCtl [1], Qsynth [2], Qsampler [3] and Qtractor
[4] as projects of primary development and authorship, with active collaboration to the JACK
Audio Connection Kit [5] and LinuxSampler [6] projects and, to a lesser extent, participant in the
development of the Real-time Linux kernel [7] and Advanced Linux Sound Architecture (ALSA
[8]).

References

[1] QjackCtl - JACK Audio Connection Kit - Qt GUI Interface
http://qjackctl.sourceforge.net/

[2] Qsynth - A FluidSynth Qt GUI Interface
http://qsynth.sourceforge.net/

[3] Qsampler - A LinuxSampler Qt GUI Interface
http://qsampler.sourceforge.net/

[4] Qtractor - An Audio/MIDI multi-track sequencer
http://qtractor.sourceforge.net/

[5] JACK Audio Connection Kit
http://jackaudio.org/

[6] LinuxSampler
http://www.linuxsampler.org/

[7] Real-time Linux kernel patch-set
http://rt.wiki.kernel.org/

[8] Advanced Linux Sound Architecture (ALSA)
http://www.alsa-project.org/

linuxjournal.com
Dave Phillips blog:
The Software Ecology Of Rui Nuno Capela
http://www.linuxjournal.com/node/1000171

ohloh.net
Open source network profile:
http://www.ohloh.net/accounts/8469

Qtractor - CNSL07@aLANtejo.uevora.pt - Oct 2007 Rui Nuno Capela - rncbc.org 9 of 9

http://www.ohloh.net/accounts/8469
http://www.linuxjournal.com/node/1000171
http://www.alsa-project.org/
http://rt.wiki.kernel.org/
http://www.linuxsampler.org/
http://jackaudio.org/
http://qtractor.sourceforge.net/
http://qsampler.sourceforge.net/
http://qsynth.sourceforge.net/
http://qjackctl.sourceforge.net/
http://www.rncbc.org/

	Introduction
	Requirements
	Download
	Installation
	Configuration
	GUI
	Sessions
	Files
	Tracks and Clips
	Engines and Buses
	Track View
	Mixer
	Connections Patchbay
	Audio Effects Plug-ins
	MIDI Instruments
	MIDI Editor
	Audio / MIDI Export
	Future Thoughts
	Conclusion
	Acknowledgements
	About the Author

